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1. Introduction

There have been extensive research works on the vibration analysis of beams or rods carrying
concentrated masses at arbitrary locations. Approximate and exact analyses were used to obtain
the natural frequencies [1–20]. The eigenfunction of the beam–mass systems was obtained by
satisfying the differential equations of motion and by imposing the corresponding boundary and
compatibility conditions associated to the masses [13–15]. The method of frequency determinant
was then used to generate the frequency equation. It was, however, claimed that, with this
method, the number of the beam equations increases as the number of attached masses increases.
Therefore, the method of Laplace transform was suggested by introducing the Dirac delta
function (d) for the concentrated mass [1–3,5,6,12]. In other works, Gurgoze and Batan [11]
concerned the numerical solution of the transcendental frequency equation. The characteristic
equation was obtained by using Rayleigh–Ritz method [17] and free vibrations were analyzed by
using the Laplace transform method [18]. Maurizi and Belles [19] compared two fundamental
theories of beam vibrations. Ozkaya and Pakdemirli [20] obtained the frequencies for the
clamped–clamped beam with mass and searched approximate solutions of free and forced non-
linear vibrations using a perturbation method.

Low et al. [21] found that the results of experiments and the theory did not match well for
beams of large slenderness ratio for centre-loaded beams. Different assumed shape functions to
obtain the kinetic and potential energies of the three classical beams carrying a concentrated mass
were presented [22,23]. A later work [24] showed that the correlation between theory and
experiments was much improved when stretching effects were included.

In Ref. [25], the fundamental eigenvalue of beams carrying concentrated masses was predicted
merely from the individual beam system carrying a single mass, by virtue of Dunkerley’s formula.
The time saving owing to the proposed method was illustrated in the parametric study. In another
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work [26,27], both the method of frequency determinant and the method of Laplace transform
were considered and compared for the solution process and computation time saving.

In the present work, an Euler–Bernoulli type beam carrying multiple masses on various
locations is again considered. The method of Rayleigh quotient is applied together with the
respective shape function with a simple trigonometric function for a quick frequency estimation of
the beam–mass system. In this paper, firstly, the solution methods for frequencies of three mass-
loaded beams are presented with both the transcendental characteristic equation and the
Rayleigh estimation. Secondly, parametric results by solving the eigenfrequency equation
and Rayleigh’s expression are presented and compared. Finally, the effectiveness and validity of
Rayleigh’s estimation is studied and discussed.

2. Model considered

As an example of multiple-mass loaded beams, let us consider a beam carrying three
concentrated masses at x ¼ a1; x ¼ a2; and x ¼ a3; where x is the spatial co-ordinate along the
beam length of l as shown in Fig. 1.

The differential equation associated with the present eigenvalue problem is known as [28,29]

d4V

dx4
� k4V ¼ 0; ð1Þ

in which

k4 ¼
rAo2

EI
; ð2Þ

where r is the beam density, A is the cross-sectional area, E is Young’s modulus, I is the moment
of inertia of the beam cross-section with respect to the neutral axis of the beam, and o represents
the eigenfrequency of the beam with masses.
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The general solutions of the ordinary differential equation (1) for the loaded beam system, as
shown in Fig. 1, can be defined in different segments as [28,29]

V1ðxÞ ¼ C1 sin kx þ C2 cos kx þ C3 sinh kx þ C4 cosh kx;

V2ðxÞ ¼ C5 sin kx þ C6 cos kx þ C7 sinh kx þ C8 cosh kx;

V3ðxÞ ¼ C9 sin kx þ C10 cos kx þ C11 sinh kx þ C12 cosh kx;

V4ðxÞ ¼ C13 sin kx þ C14 cos kx þ C15 sinh kx þ C16 cosh kx; ð3Þ

in which Cq (q ¼ 1–16) are constants to be determined, while V1; V2; V3 and V4 are the left and
right transverse displacements associated to the respective concentrated masses M1; M2 and M3:

The compatibility conditions at the location of three concentrated masses in Fig. 1 are given as
follows:

V1ða1Þ ¼ V2ða1Þ; V 0
1ða1Þ ¼ V 0

2ða1Þ; V 00
1 ða1Þ ¼ V 00

2 ða1Þ;

V 000
1 ða1Þ � V 000

2 ða1Þ þ a1k4V1ða1Þ ¼ 0;

V2ða2Þ ¼ V3ða2Þ; V 0
2ða2Þ ¼ V 0

3ða2Þ; V 00
2 ða2Þ ¼ V 00

3 ða2Þ;

V 000
2 ða2Þ � V 000

3 ða2Þ þ a2k4V2ða2Þ ¼ 0;

V3ða3Þ ¼ V4ða3Þ; V 0
3ða3Þ ¼ V 0

4ða3Þ; V 00
3 ða3Þ ¼ V 00

4 ða3Þ;

V 000
3 ða3Þ � V 000

4 ða3Þ þ a3k4V3ða3Þ ¼ 0; ð4Þ

where primes denote differentiation with respect to the position variable x: The corresponding
mass ratios have been defined by a1 ¼ M1=ðrAlÞ; a2 ¼ M2=ðrAlÞ and a3 ¼ M3=ðrAlÞ:

For a complete formulation of the boundary-value problem, the boundary conditions for the
three beam ends considered in this work can now be specified as follows:

V ¼ 0 and V 0 ¼ 0 ðclamped endÞ;

V 00 ¼ 0 and V 000 ¼ 0 ðfree endÞ;

V ¼ 0 and V 00 ¼ 0 ðpinned endÞ: ð5Þ

3. Frequency solutions

3.1. Eigenfrequency equations

Conditions specified in Eqs. (4) and (5) can be written in terms of Cq (q ¼ 1–16) by virtue of
Eq. (3)

BC ¼ 0; ð6Þ

in which C ¼ fC1;C2;C3;C4;C5;C6;C7;C8;C9;C10;C11;C12;C13;C14;C15;C16g
T and B is the

16	 16 matrix associated to a particular beam type.
The frequency equation, detðBÞ ¼ 0; is derived symbolically in this work by virtue of Maple

software [30]. The characteristic equations are written in terms of eigenvalue b (bi ¼ kil for mode
i), position parameters Zj (¼ aj=l), and mass ratios aj (¼ Mj=ðrAlÞ). The generated eigenfrequency
(or characteristic) equations for different cases can then be numerically solved for the eigenvalues
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(or eigenfrequencies) by using the same software. Note that the beams with three different ends
are considered here: clamped–clamped, clamped–free and pinned–pinned.

A similar frequency analysis was performed for single-mass-loaded beams with classical
boundary conditions [9,16,25]. By solving the determinant of an 8	 8 matrix, the eigenfrequency
equation for each case was obtained and expressed explicitly in terms of eigenvalue b; position
parameter Z; and mass ratio a:

To begin with the simplest beam–mass model, the frequency equations for the three beams
carrying a single mass are listed as follows [16,25]:

(i) Clamped–clamped (16 terms):

2ð1 � cos b cosh bÞ þ ab½sin b cosh b cosh2 bZ� cos b sinh b cos2 bZ

þ cos b cosh bðsin bZ cosh bZ� cos bZ sinh bZÞ

þ cos b sinh bðcos bZ cosh bZ� sin bZ sinh bZÞ

� sin b cosh bðcos bZ cosh bZþ sin bZ sinh bZÞ

þ sin b sinh bðsin bZ cosh bZþ cos bZ sinh bZÞ

� sin b sinh bðcos bZ sin bZþ cosh bZ sinh bZÞ

þ cos bZ sinh bZ� sin bZ cosh bZ� ¼ 0: ð7Þ

(ii) Clamped–free (16 terms):

2ð1 þ cos b cosh bÞ þ ab½cos b sinh b cos2 bZ� sin b cosh b cosh2 bZ

þ cos b cosh bðcos bZ sinh bZ� sin bZ cosh bZÞ

þ cos bsinh bðsin bZ sinh bZ� cos bZ cosh bZÞ

þ sin bcosh bðcos bZ cosh bZþ sin bZ sinh bZÞ

� sin b sinh bðcos bZ sinh bZþ sin bZ cosh bZÞ

þ sin b sinh bðcosh bZ sinh bZþ cos bZ sin bZÞ

þ cos bZ sinh bZ� sin bZ cosh bZ� ¼ 0: ð8Þ

(iii) Pinned–pinned (5 terms):

2sin b sinh bþ ab½sin b sinh bðcosh bZ sinh bZ� cos bZ sin bZÞ

þ cos b sinh b sin2 bZ� sin b cosh b sinh2 bZ� ¼ 0; ð9Þ

where b4 ¼ ðklÞ4 ¼ rAo2l4=ðEIÞ by virtue of Eq. (2).
As the mass on a beam increases to two, the frequency equation becomes much longer. For

example, the characteristic equation of pinned–pinned beams carrying two concentrated masses is
given by [25]:
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pp 2M freqn (48 terms):

4sin b sinh bþ a1a2b
2½2cos b cosh bþ sin b coshðbZ1ÞsinhðbZ1ÞcoshðbZ2Þ

	 sinhðbZ2Þsinh b� cosðbZ2Þsin b sin ðbZ2ÞcoshðbZ1ÞsinhðbZ1Þsinh b

þ cosðbZ2Þ cos bsinðbZ2Þsinh bþ cos2ðbZ1Þcos b cosh2ðbZ2Þcosh b

þ cosðbZ1ÞsinðbZ1Þ cos b sinh b cos2ðbZ2Þ þ?29 termsy�

þ 2b½ða1 þ a2Þðsin b cosh bþ cos b sinh bÞ

� a1 cosðbZ1ÞsinðbZ1Þsin b sinh b

þ a2 coshðbZ2Þsin b sinh b sinhðbZ2Þ þ?6 termsy� ¼ 0: ð10Þ

For the same boundary ends, a three-mass-loaded beam as shown in Fig. 1 can now be obtained
by virtue of Eq. (6):
pp 3M freqn (318 terms):

8sin b sinh bþ a1a2a3b
3½sin b cosh b cos2ðbZ1Þcos

2ðbZ3Þ þ?193 termsy�

þ b2½2a1a3 cos b cosh b cosh2ðbZ1Þcos
2ðbZ3Þ þy104 termsy�

þ b½4a2 sin b sinh b cosh2ðbZ2Þsinh
2ðbZ2Þ þ?17 termsy� ¼ 0: ð11Þ

Many terms in the frequency equation (10) and (11) have been omitted for clarity. It is obvious
that the total number of terms increases significantly from 5 to 48 and 318, if the number of
masses carried by the pinned–pinned beam is from one to two and three, respectively.

The frequency equations for the clamped–clamped and clamped–free beams carrying two/three
masses are not listed here owing to the lengthiness of the expressions. In fact, the frequency
equation for the two-mass-loaded clamped–clamped beam contains 117 terms [26,27], while the
expression for the three-mass-loaded clamped–clamped beam is more than 50 times longer than
that of pinned–pinned beam, pp 3M freqn, as listed in Eq. (11).

3.2. Rayleigh estimation

The fundamental frequency of a beam carrying a mass at various positions can be obtained by
substituting a specified shape function into Rayleigh’s quotient [22,23]:

b4 ¼

R
½d2vðxÞ=dx2�2 dx

R
v2ðxÞ dx þ av2ðaÞ

; ð12Þ

where vðxÞ is the shape function to be specified, while vðaÞ is the corresponding beam deflection at
x ¼ a; the location of concentrated mass M:

In the case of the beam carrying multiple masses, Eq. (12) can be extended to introduce the
respective concentrated masses MjðajÞ located at position x ¼ xj ¼ aj;

b4 ¼

R
½d2vðxÞ=dx2�2 dx

R
v2ðxÞ dx þ

P
j ajv2ðajÞ

; ð13Þ
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where aj ¼ Mj=ðrAlÞ is the mass ratio associated to Mj: For the loaded-beam system shown in
Fig. 1, Eq. (13) becomes:

b4 ¼

R
½d2vðxÞ=dx2�2 dx

R
v2ðxÞ dx þ a1v2ðZ1Þ þ a2v2ðZ2Þ þ a3v2ðZ3Þ

: ð14Þ

Different trigonometric functions have been suggested for use in Eq. (14) as a shape function vðxÞ
for the respective beam considered in this work [26,27,31]:

(i) clamped–clamped beam: vðxÞ ¼ Ad ð1� cosð2px=lÞÞ;
(ii) clamped–free beam: vðxÞ ¼ Ad ð1� cosðpx=ð2lÞÞÞ;
(iii) pinned–pinned beam: vðxÞ ¼ Ad sinðpx=lÞ;

where Ad is the amplitude of beam deflection.

3.3. Error parameter defined for comparison

For the comparison of the two methods, an error parameter is defined as

eð%Þ ¼ ðbray � beigÞ100=beig; ð15Þ

in which the eigenvalue beig is obtained by solving the respective eigenfrequency equation
presented in Section 3.1, whereas bray is the frequency by virtue of Rayleigh’s expression, Eq. (14).
Eq. (15) enables us to judge the validity of the Rayleigh estimation, if compared to that obtained
by solving the eigenfrequency equation. A small error implies that Rayleigh’s expression is a good
approximation and should be applied since the solving of the algebraic expression is much more
timesaving. In fact, the eigenfrequency equation can be solved symbolically by using Maple [30],
and the computation time is much longer than the solving of Rayleigh’s expression (14). However,
Maple with Pentium 4 is not able to symbolically solve the frequency equations of the clamped–
clamped/free beams carrying three masses. The object (i.e., frequency equation) is too large to
operate or simplify, according to the message given by Maple. Therefore, the root-searching
scheme [32] was adopted to obtain the eigensolutions in the present work.

4. Results and discussion

4.1. Parametric comparisons

Fig. 2 shows the results of beig and bray for a clamped–free beam with the changing Z2: It
indicates the changing of the fundamental frequency of the loaded beam with a mass M2 moving
from one end to another, while two other different masses fixed at Z1 ¼ 0:2 and Z3 ¼ 0:55;
respectively. To easily compare the two results, the error e (in percentage) by using Rayleigh’s
approximation with different Z3 is given in Fig. 3. It is seen that Rayleigh’s estimation is always
higher than the respective eigenvalue estimated by solving the characteristic equation. This is the
fact has been derived by Meirovitch [28]. Also, the error reduces as the mass places towards the
free end. Note that the maximum error with respect to that obtained by eigenanalysis is less than
4%, in this particular case. It is also interesting to note that the error reaches its maximum if both
the two masses M2 and M3 were placed near the node of the beam system, Z ¼ 0:55 in Fig. 3.
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Fig. 2. Eigenvalue of the clamped–free loaded beam with a1 ¼ 1
4
; a2 ¼ 1

2
; a3 ¼ 1

3
and Z1 ¼

2
10
; Z3 ¼ 0:55: (a) Rayleigh’s

result and (b) eigensolution.

Fig. 3. Error of Rayleigh’s approximation with respect to the eigensolution of the clamped–free beam with a1 ¼ 1
4
;

a2 ¼ 1
2
; a3 ¼ 1

3
and Z1 ¼

2
10
:
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Figs. 4–6 provide the errors e (%) in changing Z2 for the three beams with various a2: In fact,
the error curve looks similar to the deflection shape of the respective beam. The error reduces, in
general, for heavier M2: For the clamped–clamped and pinned–pinned beams, two peaks occur as
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Fig. 4. Effect of a2 on Rayleigh’s error with respect to the eigensolution of the clamped–free beam with a1 ¼ 1
2
; a3 ¼ 7

10

and Z1 ¼
2
10
; Z3 ¼

8
10
: (a) a2 ¼ 1; (b) a2 ¼ 1

2
; (c) a2 ¼ 1

4
and (d) a2 ¼ 1

10
:

Fig. 5. Effect of a2 on Rayleigh’s error with respect to the eigensolution of the clamped–clamped beam with a1 ¼ 1
2
;

a3 ¼ 7
10

and Z1 ¼
2
10
; Z3 ¼

8
10
: (a) a2 ¼ 1; (b) a2 ¼ 1

2
; (c) a2 ¼ 1

4
and (d) a2 ¼ 1

10
:

K.H. Low / Journal of Sound and Vibration 268 (2003) 843–853850



the mass M2 is placed near to any of two other masses. The peak at Z3 is higher as the total mass
of ða2 þ a3Þ is higher than that of a1:

Fig. 7 compares the errors of the three beams under the same loading. It is found that the error
for the clamped–clamped/free beams is higher than that with the pinned–pinned beam. For all
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Fig. 6. Effect of a2 on Rayleigh’s error with respect to the eigensolution of the pinned–pinned beam with a1 ¼ 1
2
;

a3 ¼ 7
10

and Z1 ¼
2
10
; Z3 ¼

8
10
: (a) a2 ¼ 1; (b) a2 ¼ 1

2
; (c) a2 ¼ 1

4
and (d) a2 ¼ 1

10
:

Fig. 7. Effect of boundary ends on Rayleigh’s error with respect to the eigensolution of the three beams with

a1 ¼ a2 ¼ a3 ¼ 2 and Z1 ¼
2
10; Z3 ¼

8
10: (a) Clamped–clamped, (b) clamped–free and (c) pinned–pinned.
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mass ratios of 2, the maximum error is less than 8% for the clamped–clamped beam, as illustrated
in Fig. 7. This is the allowable maximum range of loaded weights for the linear model, Eq. (1), to
be valid. A non-linear beam model should be adopted for cases of heavier loaded masses due to
the large beam deflection.

4.2. Saving in computation

The eigensolution process for the clamped–clamped/free beams carrying three masses takes
much longer time if compared to that for the pinned–pinned case. This is expected as the
characteristic equation of the three-mass-loaded clamped–clamped/free beams is more than 50
times longer than that of pinned–pinned beams. Rayleigh’s method by Eq. (13), with the
respective trigonometry function, is highly recommended in view of its simple algebraic form and
the huge time saving, if compared with that by eigenanalysis. Most importantly, the acceptable
maximum errors (about 8% for the clamped–clamped beam with all a set at 2, as seen in Fig. 7). It
is also believed that the computational time saved by solving Rayleigh’s expression (13) could be
much more significant if it is applied to the beam carrying more than three masses at various
locations. Furthermore, the generation of frequency equations from Eq. (6) and the solving for
beig are almost impossible for the loaded beam–mass system with higher number of masses.

5. Concluding remarks

In this paper, the validity of Rayleigh’s expression (13) applied to a quick frequency estimation
of uniform beams carrying multiple masses has been investigated and demonstrated. The
fundamental frequencies by using the Rayleigh method have been compared to those obtained by
solving the corresponding characteristic equation. It has been demonstrated that the number of
terms of the characteristic equation increases significantly if the number of masses carried by the
beam is increased. It is also found that Rayleigh’s expression with trigonometric shape functions
can generally yield good approximation if compared with the result associated to the
eigenanalysis. Therefore, Rayleigh’s method is highly recommended for uniform beams carrying
multiple masses at various positions, in view of the significant computation time saving.
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